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0. Introduction

There are two common definitions of the Wavefront Set for a distribution u, WF(u) on an
open set X ⊆ Rn

Definition 0.1 (Definition 1). (x, ξ) ∈ U × Rn ∼= T ∗U 6∈ WF(u) if there exists some
ϕ ∈ C∞c (U), ϕ(x) = 1 and ϕ̂u(η) is rapidly decreasing in an open cone around ξ, i.e. there
exists an open cone Γ ⊆ Rn containing ξ such that for all N there exists CN so that for all
η ∈ Γ

|ϕ̂u(η)| ≤ CN(1 + |η|)−N .

Definition 0.2 (Definition 2). (x, ξ) ∈ U ×Rn 6∈WF(u) if there exists a Pseudodifferential
operator A ∈ Ψ0(U), elliptic at (x, ξ) such that Au ∈ C∞(U).

The first definition has the advantage of being elementary, whereas the second has the
advantange of being easy to work with. It is desirable to have proofs of the basic facts about
wavefront set without recourse to pseudodifferential operators. In this note we prove the
following two basic facts.

Proposition 0.3. Let Π : U ×Rn be projection onto the first factor. Then for any distribu-
tion u on U , sing supp(u) = Π(WF(u)).

Theorem 0.4 (Coordinate Invariance.). Let ϕ : U → V be a diffeomorphism. Denote by
Φ : T ∗U → T ∗V the induced symplectomorphism, i.e. Φ(x, ξ) = (ϕ(x), d(ϕ−1

ϕ(x))
T ξ). Then if

u is a distribution on U , then WF(ϕ∗u) = Φ(WF(u)).

In the statement of the Theorem, ϕ∗u is the pushforward of u, defined to be consistent
with integration by

〈ϕ∗u, ψ〉 = 〈u, ψ ◦ ϕ| det dϕ|〉.

1. A Fundamental Lemma

In this section we prove a fundamental lemma.
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Lemma 1.1. Let A : Rn → Rn be invertible and linear and let F (η, ξ) satisfy for every N ,
the bound

|F (η, ξ)| ≤ CN

KN∑
k=0

(1 + |ξ|)k(1 + |η − A−1ξ|)−N−k. (1.1)

Suppose v ∈ C∞(Rn) is rapidly decreasing in a cone Γ 3 η0 and v is of polynomial growth
globally (i.e. |v(η)| ≤ C(1 + |η|)M .) Then

w(ξ) =

∫
v(η)F (η, ξ) dη

is rapidly decaying in an open cone around Aη0.

The statement of this Lemma seems unnecessarily complicated, although we will need to
use it. The main ideas are aleady present in the case KN = 0, and the proof can be read
with this assumption in mind.

Proof. Let η0 ∈ Γ̃ be a cone contained in a closed cone in Γ. We will show that w is rapidly
decaying in A(Γ̃). Suppose ξ̃ = A(ξ) ∈ Γ̃. Then

w(ξ̃) =

∫
Γ

v(η)F (η, A(ξ)) dη +

∫
Γc
v(η)F (η, A(ξ)) dη.

For the first integral we may use the bound, with N ′ = N + 2n,∣∣∣∣∫
Γ̃

v(η)F (η, A(ξ)) dη

∣∣∣∣ ≤ CN ′

KN′∑
k=0

∫
Rn

(1 + |η|)−N−k(1 + |η − ξ|)−N−2n−k(1 + |ξ̃|)k dη.

Since c|ξ̃| ≤ |ξ| ≤ C|ξ̃| independently of ξ̃, a generic term in the sum may be bounded by

CN ′(1 + |ξ̃|)k(1 + |ξ|)−N−k
∫
Rn

(1 + |ξ − η|)−2n dη ≤ CN ′(1 + |ξ̃|)−N ,

since the integral is bounded and does not depend on ξ̃. Summing all such bounds, we
deduce that the first integral is bounded by

CN ′(1 + |ξ̃|)−N ′
,

which shows a contribution of rapid decay from the first integral.
We now turn our attention to the second integral. Suppose ξ ∈ Γ̃ and η ∈ Γc. Then

|ξ − η| ≥ c(|ξ|+ |η|). Indeed, consider

T = (Γ̃× Γc) ∩ S2n.

Then the map (ξ, η) ∈ T 7→ |ξ − η| attains its minimum c′ > 0. Since Γ̃,Γc are conical, for
ξ ∈ Γ̃, η ∈ Γc, (ξ, η)/|(ξ, η)| ∈ T , and so

|ξ − η| ≥ c′
√
|ξ|2 + |η|2,
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which completes the proof.
So for the second integral we may bound, with N ′ = N +M + 2n,∣∣∣∣∫

Γc
v(η)F (η, A(ξ)) dη

∣∣∣∣ ≤ CN ′

KN′∑
k=0

∫
Rn

(1 + |η|)M(1 + |η − ξ|)−N−M−2n−k(1 + |ξ̃|)k dη

≤ CN ′

KN′∑
k=0

∫
Rn

(1 + |η|)M(1 + |η − ξ|)−M−2n(1 + |η|+ |ξ|)−N−k(1 + |ξ̃|)Mk dη

≤ CN ′

KN′∑
k=0

∫
Rn

(1 + |η|)M(1 + |η − ξ|)−M−2n(1 + |ξ|)−N−k(1 + |ξ̃|)k dη.

Similar to above, a generic term in the sum is bounded by

CN ′(1 + |ξ̃|)M(1 + |ξ̃|)−N−k(1 + |ξ̃)|k
∫

(1 + |ξ − η|)−2n dη ≤ CN ′(1 + |ξ̃|)−N ,

which shows that the second integral also contributes rapid decay.

We have the immediate corollaries.

Corollary 1.2. If u is a distribution on U , ψ ∈ C∞c (U), and ψ̂u is rapidly decaying on a
cone Γ, then for any ϕ ∈ C∞c (U), ϕ̂ψu is rapidly decaying on any slightly smaller cone.

Proof. It suffices to observe that
ϕ̂ψu = ϕ̂ ∗ ψ̂u

and that since ψu ∈ C−∞c (U), ψ̂u is of polynomial growth.

Corollary 1.3. Suppose ϕ ∈ C∞(U) and u is a distribution. Then WF(ϕu) ⊆WF(u).

Proof. Suppose (x0, ξ0) 6∈ WF(u). Then there exists some ψ ∈ C∞c (U) and ψ(x0) = 1 so
that ψ̂u is rapidly decaying in an open cone around ξ0. Now apply Corollary 1.2

We will also need another version of Lemma 1.1, but with different assumptions on F .

Lemma 1.4. Let A, F , v, w, Γ, η0 be as in Lemma 1.1, however instead of F satisfying
(1.1), we assume that F (η, ξ) is uniformly bounded and supported in in the region

|η − A−1ξ| ≤ ε(1 + |ξ|),

where ε > 0 is sufficiently small (how small will be clear in the proof). Then the conclusion
of Lemma 1.1 holds as well.
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Proof. We show that the same cone A(Γ̃) works, as chosen in the proof of Lemma 1.1. Setting
ξ̃ = Aξ, we have the bound

|w(ξ̃) ≤ CN

∫
|η−ξ|≤ε(1+|Aξ|)

(1 + |η|)−N dη + C

∫
|η−ξ|≤ε(1+|Aξ|)

(1 + |η|)M dη.

Of course, ε(1 + |Aξ|) ≤ ε′(1 + |ξ|) for some ε′ > 0, so we may substiture this larger bound
instead. For the first integral, 1 + |η| ≥ 1 + |ξ| − |η − ξ| ≥ (1− ε′)(1 + |ξ|), and so the first
integral is bounded by

CNvol(B(0, ε(1 + |ξ|))((1− ε′)(1 + |ξ|))−N ≤ CN(1 + |ξ̃|)−N+n,

which is the rapid decay.
For the second integral, we recall from the proof of Lemma 1.1 that |η− ξ| ≥ c(|η|+ |ξ|)

for some c > 0. So in the second integral, we have the condition

c|ξ| ≤ c|η|+ c|ξ| ≤ ε′ + ε′|ξ|,

which is not satisfied for large |ξ| provided ε′ < c. Thus the second integral vanishes for
large |ξ|, and so is in particular rapidly decreasing.

2. Proofs

Proof of Proposition 0.3. If x 6∈ sing suppu, then by definition there exists ϕ ∈ C∞c (U),
ϕ(x) = 1 so that ϕu ∈ C∞c (U), and hence ϕ̂u is rapidly decreasing. This shows that
Π(WF(u)) ⊆ sing suppu. For the converse, suppose (x, ξ) 6∈ WF (u) for all ξ. We ned to
show that x 6∈ sing supp(u). Since Sn is compact, there are finitely many cones Γi 3 ξi which
cover Rn and ϕi ∈ C∞c (U) with ϕi(x) = 1 and ϕ̂iu rapidly decaying in Γi. Set ϕ =

∏
i ϕi.

We claim that ϕ̂u is rapidly decaying everywhere, and hence ϕu ∈ C∞c (U), which is what
we want. This follows immediately from Corollary 1.2 and induction.

Proof of Theorem 0.4. We need only show that if (x0, ξ0) 6∈ WF (u), then Φ(x0, ξ0) 6∈WF(ϕ∗u),
since the reverse inclusion follows by considering ϕ−1. The theorem is obvious if ϕ is a trans-
lation, so we might as well assume 0 ∈ U ∩ V , that x0 = 0 and ϕ(0) = 0. We wish to
find a function ψ ∈ C∞c (U), ψ(0) = 1 so that ϕ̂∗(uψ) is rapidly decaying in a cone around
(dϕ−1

0 )T ξ0. Suppose ψ ∈ C∞c (U) is arbitrary, and suppose χ ∈ C∞c (U) is 1 on suppψ. Then
by definition

ϕ̂∗(uψ)(η) = 〈ϕ∗(uψ)(y), e−iy·η〉
= 〈(uψ)(x), e−iϕ(x)·η| det dϕ(x)|〉
= 〈(uψ| det dϕ|)(x), e−iϕ(x)·ηχ(x)〉

= 〈 ̂(uψ| det dϕ|), ˘e−iϕ(·)·ηχ〉.
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where here, v̆ denotes the inverse Fourier transform. By Corollary 1.2, ̂(uψ| det dϕ|) is rapidly
decaying in a cone around ξ0, provided ψ is chosen appropriately. In fact, multiplying by
another cutoff, the Corollary also shows that we can ensure that suppψ (and hence suppχ)
is as small as we like. ̂(uψ| det dϕ|) is also a smooth function of polynomial growth, and so
the last distributional pairing is actually an integral. We now examine

˘e−iϕ(·)·ηχ(ξ) =
1

(2π)n

∫
eix·ξe−iϕ(x)·ηχ(x) dx =: F (ξ, η).

We want to prove that we can write F (ξ, η) = F1(ξ, η) + F2(ξ, η) where F1 satifies the
hypotheses of Lemma 1.1, and F2 satisfies those of Lemma 1.4, with A = d(ϕ−1

0 )T (where η
and ξ have their roles reversed).This will then show that ϕ̂∗(uψ)(η) is rapidly decaying in a
cone around d(ϕ−1

0 )T ξ0, i.e. Φ(0, ξ0) 6∈WF(ϕ∗u).
To do this, we integrate by parts. For ξ, η, fixed, let L be the differential operator

L = −i
n∑
k=1

(ξ − dϕTx · η)k
|ξ − dϕTx · η|2

∂k.

Then, wherever ξ 6= dϕTx · η,

L(eix·ξe−iϕ(x)·η) = eix·ξe−iϕ(x)·η.

Let Lt denote the (real) adjoint of L, the operator satisfying∫
(Lf)g =

∫
f(Ltg)

whenever f ∈ C∞(Rn), and g ∈ C∞c (Rn). If suppχ is chosen to be small enough, then
we can ensure that for any that there whenever x ∈ suppχ, then |ξ − dϕTx · η| ≤ ε only if
|ξ − A−1η| ≤ ε(1 + |η|).

Let a(ξ, η) be the indicator function of the region |ξ − A−1η| ≤ ε(1 + |η|). Set F1 =
(1− a)F and F2 = aF . Then F2 satisfies the appropriate assumptions by construction. For
(ξ, η) ∈ supp(1 − a), the operator L is well-defined for all x in the domain of integration,
thus we have that for any N

F1(ξ, η) =
1

2πn

∫
Rn

LN(eix·ξe−iϕ(x)·η)χ(x) dx =
1

2πn

∫
Rn

eix·ξe−iϕ(x)·η(Lt)Nχ(x) dx,

where of course both integrals are taken over the compact set suppχ.1 Thus, to prove
Theorem 0.4, we need to examine Lt. This will be done successively in the following lemmas.
Since the proofs are routine induction once the correct hypotheses are given, we will only
state the lemmas and omit the proofs.

1To be completely rigorous, one should first choose a slightly larger cutoff χ′ which is 1 on suppχ, for
which x ∈ suppχ′, then |ξ − dϕT

x · η| ≤ 2ε only if |ξ − A−1η| ≤ 2ε(1 + |η|). This is possible by shrinking χ
even further. Then one integrates over the domain suppχ′ (which may be chosen to be a ball), and observe
that the boundary terms vanish since χ is 0 on the boundary.
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Lemma 2.1. Let gk ∈ C∞(Rn), and set

P =
∑

gk∂k.

Then (P t)N is a sum of terms of the form

C

 n∏
k=1

∏
|α|≤N

(∂αgk)
jk,α

 ∂β,

for some C, β, n depending on the term, and where
∑

k,α jk,α = N .

Lemma 2.2. Set

gk = −i(ξ − dϕ
T
x · η)k

|ξ − dϕTx · η|2
.

Then ∂αgk is a sum of terms of the form

|ξ − dϕTx · η|−2m(ξ − dϕTx · η)βηγh(x),

for some m, where h ∈ C∞(Rn), and |β|+ |γ| = 2m− 1.

Now we may complete the proof. For gk as in the statement of the lemma above, it
follows from the multinomial theorem that (∂αgk)

j is a sum of terms of the form

|ξ − dϕTx · η|−2m(ξ − dϕTx · η)βηγh(x),

where h ∈ C∞, and |β|+ |γ| = 2m− j. From this and both lemmas, we deduce that

(Lt)N =
∑

0≤`≤MN ,|δ|≤N

a`,δ(x, ξ, η)∂δ,

where a`,δ(x, ξ, η) are of the form

|ξ − dϕTx · η|−2m(ξ − dϕTx · η)βηγh(x),

where h ∈ C∞, |β| + |γ| = 2m − N .Indeed, a`,δ are just products of the terms above, and
from the first lemma the sum of all jk,α is just N . Since for each `, δ, suppχ,

|a`,δ| ≤ C|ξ − dϕTx · η|−2m+|β|(1 + |η|)|γ|.

Set k = 2m− |β| −N = −|γ|. This turns the previous inequality to

|a`,δ| ≤ C|ξ − dϕTx · η|−N−k(1 + |η|)k.

Summing up over all `, δ, we deduce that

F1(ξ, η) ≤ C

∫
Rn

∑
`,δ

|a`,δ|χ(x) dx ≤ C
∑
`,δ

|a`,δ| ≤ C

KN∑
k=0

|ξ − dϕTx · η|−N−k(1 + |η|)k,
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where KN is some large integer.

So, in order to obtain the desired bounds on F1, it thus suffices to show that

|ξ − dϕTx · η| ≥ c(1 + |ξ − A−1 · η|),

for some c > 0. By assumption, we are only considering those ξ, η for which |ξ − A−1η| >
ε(1 + |η|).

We first show that
|ξ − dϕTx · η| ≥ c|ξ − A−1 · η|

for these ξ, η. The inequality is trivial for η = 0, (with c = 1) so we may assume that η 6= 0.
Since the condition on ξ, η above implies that |ξ − A−1η| > ε|η|, we need only prove the
inequality for ξ, η satisyfying this last, more general, condition. This condition is invariant
under the scaling (ξ, η) 7→ (λξ, λη), and so is the inequality we would like to prove. We may
therefore restrict ourselves to proving it for |ξ| + |η| = 1, x ∈ suppχ. Since this region is
compact,

|ξ − dϕTx · η|
|ξ − A−1 · η|

attains its minimum on this set (observe that the denominator is nonzero since |ξ−A−1η| ≥
ε|η| > 0 by hypothesis). The minimum is not zero, snce if it were, |ξ − A−1 · η| ≤ ε|η| a
condtradiction. Thus the minimum is some c′ > 0, and setting c′ = min(c, 1) proves the first
inequality.

Now, |ξ − dϕTx · η| ≥ ε by hypothesis, and so

|ξ − dϕTx · η| ≥ max(c|ξ − A−1 · η|, ε).

Redefining c = min(c, ε) then proves the full inequality.
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